Conserved Glycine 232 in the Ligand Channel of ba3 Cytochrome Oxidase from Thermus thermophilus

نویسندگان

  • William McDonald
  • Chie Funatogawa
  • Yang Li
  • Ying Chen
  • Istvan Szundi
  • James A. Fee
  • C. David Stout
  • Ólöf Einarsdóttir
چکیده

Knowing how the protein environment modulates ligand pathways and redox centers in the respiratory heme-copper oxidases is fundamental for understanding the relationship between the structure and function of these enzymes. In this study, we investigated the reactions of O2 and NO with the fully reduced G232V mutant of ba3 cytochrome c oxidase from Thermus thermophilus (Tt ba3) in which a conserved glycine residue in the O2 channel of the enzyme was replaced with a bulkier valine residue. Previous studies of the homologous mutant of Rhodobacter sphaeroides aa3 cytochrome c oxidase suggested that the valine completely blocked the access of O2 to the active site [Salomonsson, L., et al. (2004) Proc. Natl. Acad. Sci. U.S.A. 101, 11617-11621]. Using photolabile O2 and NO carriers, we find by using time-resolved optical absorption spectroscopy that the rates of O2 and NO binding are not significantly affected in the Tt ba3 G232V mutant. Classical molecular dynamics simulations of diffusion of O2 to the active site in the wild-type enzyme and G232V mutant show that the insertion of the larger valine residue in place of the glycine appears to open up other O2 and NO exit/entrance pathways that allow these ligands unhindered access to the active site, thus compensating for the larger valine residue.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing the Q-proton pathway of ba3-cytochrome c oxidase by time-resolved Fourier transform infrared spectroscopy.

In cytochrome c oxidase, the terminal respiratory enzyme, electron transfers are strongly coupled to proton movements within the enzyme. Two proton pathways (K and D) containing water molecules and hydrophobic amino acids have been identified and suggested to be involved in the proton translocation from the mitochondrial matrix or the bacterial cytoplasm into the active site. In addition to the...

متن کامل

Phylogenetic and biochemical studies of Thermus thermophilus respiratory proteins relevant to aerobic heterotrophy at hydrothermal vents: the archaeal-type cytochrome ba3 from strain HB8 is a sulphide resistant cytochrome c oxidase

Thermus thermophilus (Oshima & Imahori, 1974) is a heterotrophic, non-sporulating, non-motile, multi-plasmid bearing, high G + C, aerobic eubacterium that grows over the temperature range of ~60 to 85°C. Numerous strains of this genus have been isolated from terrestrial and shallow oceanic hot springs. Its recent discovery at ocean vent sites on the Mid-Atlantic Ridge and at the Guaymas Basin i...

متن کامل

Electron transfer among the CuA-, heme b- and a3-centers of Thermus thermophilus cytochrome ba3.

The 1-methyl-nicotinamide radical (MNA(*)), produced by pulse radiolysis has previously been shown to reduce the Cu(A)-site of cytochromes aa(3), a process followed by intramolecular electron transfer (ET) to the heme a but not to the heme a(3) [Farver, O., Grell, E., Ludwig, B., Michel, H. and Pecht, I. (2006) Rates and equilibrium of CuA to heme a electron transfer in Paracoccus denitrificans...

متن کامل

Mutation of a single residue in the ba3 oxidase specifically impairs protonation of the pump site.

The ba3-type cytochrome c oxidase from Thermus thermophilus is a membrane-bound protein complex that couples electron transfer to O2 to proton translocation across the membrane. To elucidate the mechanism of the redox-driven proton pumping, we investigated the kinetics of electron and proton transfer in a structural variant of the ba3 oxidase where a putative "pump site" was modified by replace...

متن کامل

Data for molecular dynamics simulations of B-type cytochrome c oxidase with the Amber force field

Cytochrome c oxidase (CcO) is a vital enzyme that catalyzes the reduction of molecular oxygen to water and pumps protons across mitochondrial and bacterial membranes. This article presents parameters for the cofactors of ba3-type CcO that are compatible with the all-atom Amber ff12SB and ff14SB force fields. Specifically, parameters were developed for the CuA pair, heme b, and the dinuclear cen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2014